Abstract

We discuss, from a geometric standpoint, the specific heat of a solid. This is a classical subject in solid state physics which dates back to a pioneering work by Einstein (1907) and its refinement by Debye (1912). Using a special quantization of crystal lattices and calculating the asymptotic of the integrated density of states at the bottom of the spectrum, we obtain a rigorous derivation of the classical Debye $T^3$ law on the specific heat at low temperatures. The idea and method are taken from discrete geometric analysis which has been recently developed for the spectral geometry of crystal lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.