Abstract
In the framework of projective-geometric theory of systems of differential equations developed by the authors, this paper studies the group properties of systems of two (resolved with respect to the second derivatives) second-order ordinary differential equations whose right-hand sides are polynomials of the third degree with respect to the derivatives of the unknown functions. A classification of such systems admitting four-dimensional symmetry group of the Lie–Petrov type VI 1 is given. For each of the systems, a necessary and sufficient linearization criterion is obtained, i.e., the authors find the necessary and sufficient conditions under which, by a change of variables, the system can be reduced to a differential system whose integral curves are straight lines and are expressed by three linear parametric equations or two linear equations with constant coefficients. For all linearizable systems, the linearizing changes of variables are indicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.