Abstract
Let P be a finite point set in Rd, B be a bicoloring of P and O be a family of geometric objects (that is, intervals, boxes, balls, etc). An object from O is called balanced with respect to B if it contains the same number of points from each color of B. For a collection B of bicolorings of P, a geometric system of unbiased representatives (G-SUR) is a subset O′⊆O such that for any bicoloring B of B there is an object in O′ that is balanced with respect to B.We pose and study problems on finding G-SURs. We obtain general bounds on the size of G-SURs consisting of intervals, size-restricted intervals, axis-parallel boxes and Euclidean balls. We show that the G-SUR problem is NP-Hard even in the simple case of points on a line and interval ranges. Furthermore, we study a related problem on determining the size of the largest and smallest balanced intervals for points on the real line with a random distribution and coloring.Our results are a natural extension to a geometric context of the work initiated by Balachandran et al. (Discrete Mathematics, 2018) on arbitrary systems of unbiased representatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.