Abstract
In continuous optimisation, surrogate models (SMs) are used when tackling real-world problems whose candidate solutions are expensive to evaluate. In previous work, we showed that a type of SMs - radial basis function networks (RBFNs) - can be rigorously generalised to encompass combinatorial spaces based in principle on any arbitrarily complex underlying solution representation by extending their natural geometric interpretation from continuous to general metric spaces. This direct approach to representations does not require a vector encoding of solutions, and allows us to use SMs with the most natural representation for the problem at hand. In this work, we apply this framework to combinatorial problems using the permutation representation and report experimental results on the quadratic assignment problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.