Abstract

Abstract The nondetection of dark matter (DM) particles in increasingly stringent laboratory searches has encouraged alternative gravity theories where gravity is sourced only from visible matter. Here, we consider whether such theories can pass a two-dimensional test posed by gravitational lensing—to reproduce a particularly detailed Einstein ring in the core of the galaxy cluster A3827. We find that when we require the lensing mass distribution to strictly follow the shape (ellipticity and position angle) of the light distribution of cluster member galaxies, intracluster stars, and the X-ray emitting intracluster medium, we cannot reproduce the Einstein ring, despite allowing the mass-to-light ratios of these visible components to freely vary with radius to mimic alternative gravity theories. Alternatively, we show that the detailed features of the Einstein ring are accurately reproduced by allowing a smooth, freely oriented DM halo in the lens model, with relatively small contributions from the visible components at a level consistent with their observed brightnesses. This dominant DM component is constrained to have the same orientation as the light from the intracluster stars, indicating that the intracluster stars trace the gravitational potential of this component. The Einstein ring of A3827 therefore presents a new challenge for alternative gravity theories: not only must such theories find agreement between the total lensing mass and visible mass, but they must also find agreement between the projected sky distribution of the lensing mass and that of the visible matter, a more stringent test than has hitherto been posed by lensing data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.