Abstract

The crystal structure of tin (Sn)-doped titanium dioxide (TiO2) film was investigated by using x-ray absorption fine structure (XAFS) measurement and first principle calculations. XAFS measurements suggest that Sn doping can enhance the growth of rutile TiO2 phase, where Sn ions are considered to substitute into Ti sites with a valence of 4+. First principles calculation reveals that Sn doping can reduce obviously the formation energy of the rutile phase. By comparing the measured and calculated XAFS spectra, we found that the geometric structure of Sn dopant can be understood as the alignment of SnO6 tetrahedrons through a corner oxygen in the Sn-doped TiO2 film, that is, the Sn ions substituted in the Ti sites and made a one-dimensional zigzag ‘–Sn–O–Sn–’ chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.