Abstract
Grey wolf optimizer (GWO) is an efficient meta-heuristic algorithm that is inspired by the particular hunting behavior and leadership hierarchy of grey wolves in nature. In this paper, an efficient opposition-based grey wolf optimizer algorithm is proposed for solving the fuzzy clustering problem over artificial and real-life data. This work also tries to use the benefit of fuzzy properties which presents capability to handle overlapping clusters. However, centroid information and geometric structure information of clusters are the two important issues in fuzzy data clustering to improve the clustering performance. According to, in this paper, we derive two-objective functions, such as compactness and overlap–partition (OP) measures to handle above drawbacks. The centroid information issue is solved by compactness measure, and the OP measure is used to handle the geometric structure of clustering problem. Additionally, in the proposed clustering approach, the concept of opposition-based generation jumping and opposition-based population initialization is used with the standard GWO to enhance its computational speed and convergence profile. The efficiency of the proposed algorithm is shown for five artificial datasets and five real-life datasets of varying complexities. Experimental results show that the proposed method outperforms some existing methods with good clustering qualities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.