Abstract
In this paper, we describe ongoing work in the Image Processing and Analysis Group (IPAG) at Yale University specifically aimed at the analysis of structural information as represented within magnetic resonance images (MRI) of the human brain. Specifically, we will describe our applied mathematical approaches to the segmentation of cortical and subcortical structure, the analysis of white matter fiber tracks using diffusion tensor imaging (DTI), and the intersubject registration of neuroanatomical (aMRI) data sets. Many of our methods rally around the use of geometric constraints, statistical (MAP) estimation, and the use of level set evolution strategies. The analysis of gray matter structure and connecting white matter paths combined with the ability to bring all information into a common space via intersubject registration should provide us with a rich set of data to investigate structure and variation in the human brain in neuropsychiatric disorders, as well as provide a basis for current work in the development of integrated brain function-structure analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.