Abstract

This paper concerns the estimation problem of attitude, position, and linear velocity of a rigid-body autonomously navigating with six degrees of freedom (6 DoF). The navigation dynamics are highly nonlinear and are modeled on the matrix Lie group of the extended Special Euclidean Group SE2(3). A computationally cheap geometric nonlinear stochastic navigation filter is proposed on SE2(3) with guaranteed transient and steady-state performance. The proposed filter operates based on a fusion of sensor measurements collected by a low-cost inertial measurement unit (IMU) and features (obtained by a vision unit). The closed loop error signals are guaranteed to be almost semi-globally uniformly ultimately bounded in the mean square from almost any initial condition. The equivalent quaternion representation is included in the Appendix. The filter is proposed in continuous form, and its discrete form is tested on a real-world dataset of measurements collected by a quadrotor navigating in three dimensional (3D) space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.