Abstract

According to the geometric characterization of measurement assemblages and local hidden state (LHS) models, we propose a steering criterion which is both necessary and sufficient for two-qubit states under arbitrary measurement sets. A quantity is introduced to describe the required local resources to reconstruct a measurement assemblage for two-qubit states. We show that the quantity can be regarded as a quantification of steerability and be used to find out optimal LHS models. Finally we propose a method to generate unsteerable states, and construct some two-qubit states which are entangled but unsteerable under all projective measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call