Abstract
We propose a new routing graph, the restricted Delaunay graph (RDG), for mobile ad hoc networks. Combined with a node clustering algorithm, the RDG can be used as an underlying graph for geographic routing protocols. This graph has the following attractive properties: 1) it is planar; 2) between any two graph nodes there exists a path whose length, whether measured in terms of topological or Euclidean distance, is only a constant times the minimum length possible; and 3) the graph can be maintained efficiently in a distributed manner when the nodes move around. Furthermore, each node only needs constant time to make routing decisions. We show by simulation that the RDG outperforms previously proposed routing graphs in the context of the Greedy perimeter stateless routing (GPSR) protocol. Finally, we investigate theoretical bounds on the quality of paths discovered using GPSR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.