Abstract
The purpose of this work is to demonstrate how an arbitrarily chosen background of the Universe can be made a solution of a simple geometric sigma model. Geometric sigma models are purely geometric theories in which spacetime coordinates are seen as scalar fields coupled to gravity. Although they look like ordinary sigma models, they have the peculiarity that their complete matter content can be gauged away. The remaining geometric theory possesses a background solution that is predefined in the process of constructing the theory. The fact that background configuration is specified in advance is another peculiarity of geometric sigma models. In this paper, I construct geometric sigma models based on different background geometries of the Universe. Whatever background geometry is chosen, the dynamics of its small perturbations is shown to have a generic classical stability. This way, any freely chosen background metric is made a stable solution of a simple model. Three particular models of the Universe are considered as examples of how this is done in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.