Abstract

The characterisation of geometric shapes produces their concise description and is, therefore, important for subsequent analyses, for example in Computer Vision, Machine Learning, or shape matching. A new method for extracting characterisation vectors of 2D geometric shapes is proposed in this paper. The shape of interest, embedded into a raster space, is swept several times by sweep-lines having different slopes. The interior shape’s points, being in the middle of its boundary and laying on the actual sweep-line, are identified at each stage of the sweeping process. The midpoints are then connected iteratively into chains. The chains are filtered, vectorised, and normalised. The obtained polylines from the vectorisation step are used to design the shape’s characterisation vector for further application-specific analyses. The proposed method was verified on numerous shapes, where single- and multi-threaded implementations were compared. Finally, characterisation vectors, among which some were rotated and scaled, were determined for these shapes. The proposed method demonstrated a good rotation- and scaling-invariant identification of equal shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call