Abstract

AbstractA combined experimental, numerical and theoretical investigation of the geometric scaling of the onset of a purely elastic flow instability in serpentine channels is presented. Good qualitative agreement is obtained between experiments, using dilute solutions of flexible polymers in microfluidic devices, and three-dimensional numerical simulations using the upper-convected Maxwell model. The results are confirmed by a simple theoretical analysis, based on the dimensionless criterion proposed by Pakdel & McKinley (Phys. Rev. Lett., vol. 77, 1996, pp. 2459–2462) for onset of a purely elastic flow instability. Three-dimensional simulations show that the instability is primarily driven by the curvature of the streamlines induced by the flow geometry and not due to the weak secondary flow in the azimuthal direction. In addition, the simulations also reveal that the instability is time-dependent and that the flow oscillates with a well-defined period and amplitude close to the onset of the supercritical instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.