Abstract

Let $\Omega$ be a compact Riemannian manifold with smooth boundary and let $u_t$ be the solution of the heat equation on $\Omega$, having constant unit initial data $u_0=1$ and Dirichlet boundary conditions ($u_t=0$ on the boundary, at all times). If at every time $t$ the normal derivative of $u_t$ is a constant function on the boundary, we say that $\Omega$ has the {\it constant flow property}. This gives rise to an overdetermined parabolic problem, and our aim is to classify the manifolds having this property. In fact, if the metric is analytic, we prove that $\Omega$ has the constant flow property if and only if it is an {\it isoparametric tube}, that is, it is a solid tube of constant radius around a closed, smooth, minimal submanifold, with the additional property that all equidistants to the boundary (parallel hypersurfaces) are smooth and have constant mean curvature. Hence, the constant flow property can be viewed as an analytic counterpart to the isoparametric property. Finally, we relate the constant flow property with other overdetermined problems, in particular, the well-known Serrin problem on the mean-exit time function, and discuss a counterexample involving minimal free boundary immersions into Euclidean balls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.