Abstract

The geometric renormalization technique for complex networks has successfully revealed the multiscale self-similarity of real network topologies and can be applied to generate replicas at different length scales. Here, we extend the geometric renormalization framework to weighted networks, where the intensities of the interactions play a crucial role in their structural organization and function. Our findings demonstrate that the weighted organization of real networks exhibits multiscale self-similarity under a renormalization protocol that selects the connections with the maximum weight across increasingly longer length scales. We present a theory that elucidates this symmetry, and that sustains the selection of the maximum weight as a meaningful procedure. Based on our results, scaled-down replicas of weighted networks can be straightforwardly derived, facilitating the investigation of various size-dependent phenomena in downstream applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.