Abstract

In bioluminescence tomography the location as well as the radiation intensity of a photon source (marked cell clusters) inside an organism have to be determined given the outside photon count. This inverse source problem is ill-posed: it suffers not only from strong instability but also from non-uniqueness. To cope with these difficulties the source is modeled as a linear combination of indicator functions of measurable domains leading to a nonlinear operator equation. The solution process is stabilized by a Tikhonov like functional which penalizes the perimeter of the domains. For the resulting minimization problem existence of a minimizer, stability, and regularization property are shown. Moreover, an approximate variational principle is developed based on the calculated domain derivatives which states that there exist smooth almost stationary points of the Tikhonov like functional near to any of its minimizers. This is a crucial property from a numerical point of view as it allows to approximate the searched-for domain by smooth domains. Based on the theoretical findings numerical schemes are proposed and tested for star-shaped sources in 2D: computational experiments illustrate performance and limitations of the considered approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.