Abstract
In the first half of this paper (Sects. 1–4) we generalise the standard geometric quantization procedure to symplectic supermanifolds. In the second half (Sects. 5, 6) we apply this to two examples that exhibit classical BRST symmetry, i.e., we quantize the BRST charge and the ghost number. More precisely, in the first example we consider the reduced symplectic manifold obtained by symplectic reduction from a free group action with Ad*-equivariant moment map; in the second example we consider a foliated configuration space, whose cotangent bundle admits the construction of a BRST charge associated to this foliation. We show that the classical BRST symmetry can be described in terms of a hamiltonian supergroup action on the extended phase space, and that geometric quantization gives us a super-unitary representation of this supergroup. Finally we point out how these results are related to reduction at the quantum level, as compared with the reduction at the classical level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.