Abstract
In this article we consider asymptotically harmonic manifolds which are simply connected complete Riemannian manifolds without conjugate points such that all horospheres have the same constant mean curvature h. We prove the following equivalences for asymptotically harmonic manifolds X under the additional assumption that their curvature tensor together with its covariant derivative are uniformly bounded: (a) X has rank one; (b) X has Anosov geodesic flow; (c) X is Gromov hyperbolic; (d) X has purely exponential volume growth with volume entropy equals h. This generalizes earlier results by G. Knieper for noncompact harmonic manifolds and by A. Zimmer for asymptotically harmonic manifolds admitting compact quotients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.