Abstract
A new method is presented for the efficient and reliable pose determination of 3D objects in dense range image data. The method is based upon a minimalistic Geometric Probing strategy that hypothesizes the intersection of the object with some selected image point, and searches for additional surface data at locations relative to that point. The strategy is implemented in the discrete domain as a binary decision tree classifier. The tree leaf nodes represent individual voxel templates of the model, with one template per distinct model pose. The internal nodes represent the union of the templates of their descendant leaf nodes. The union of all leaf node templates is the complete template set of the model over its discrete pose space. Each internal node also encodes a single voxel which is the most common element of its child node templates. Traversing the free is equivalent to efficiently matching the large set of templates at a selected image seed location. The method was implemented and extensive experiments were conducted for a variety of combinations of tree designs and traversals under isolated, cluttered, and occluded scene conditions. The results demonstrated a tradeoff between efficiency and reliability. It was concluded that there exist combinations of tree design and traversal which are both highly efficient and reliable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.