Abstract
We investigate the degree sequences of geometric preferential attachment graphs in general compact metric spaces. We show that, under certain conditions on the attractiveness function, the behaviour of the degree sequence is similar to that of the preferential attachment with multiplicative fitness models investigated by Borgs et al. When the metric space is finite, the degree distribution at each point of the space converges to a degree distribution which is an asymptotic power law whose index depends on the chosen point. For infinite metric spaces, we can show that for vertices in a Borel subset of S of positive measure the degree distribution converges to a distribution whose tail is close to that of a power law whose index again depends on the set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.