Abstract

We study four classical graph problems – Hamiltonian path, Traveling salesman, Minimum spanning tree, and Minimum perfect matching on geometric graphs induced by bichromatic ( Open image in new window and Open image in new window ) points. These problems have been widely studied for points in the Euclidean plane, and many of them are \(\mathsf {NP}\)-hard. In this work, we consider these problems in two restricted settings: (i) collinear points and (ii) equidistant points on a circle. We show that almost all of these problems can be solved in linear time in these constrained, yet non-trivial settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.