Abstract

Surface topographies resulting from grinding processes and the corresponding process forces depend on various process conditions, such as the grain shapes and the workpiece material. Geometric physically-based simulations can be used to analyze these process results, taking the individual grains on the grinding tool into account. However, the experimental calibration of the force models is time consuming and challenging since the shape of the grains changes due to wear. Finite Element Analysis (FEA) can be used to calculate the process forces of individual grain engagements with defined grain shapes based on material models, e.g., the Johnson-Cook (JC) model. In this paper, the Coupled Eulerian-Lagrangian (CEL) method is used to determine the cutting force coefficients of the empirical force model of a geometric physically-based simulation system. The workpiece model is described by an Eulerian formulation and the grain is modeled as a rigid hull comprising triangular elements. The calibrated force model is applied in a simulation of an exemplary grinding process in order to calculate the process forces for each individual grain. The simulated forces are validated by comparing the simulation results to experimental investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call