Abstract

Hamiltonian Lie-Poisson structures of the three-wave equations associated with the Lie algebras SU (3) and SU (2, 1) are derived and shown to be compatible. Poisson reduction is performed using the method of invariants, and geometric phases associated with the reconstruction are calculated. These results can be applied to applications of nonlinear-waves in, for instance, nonlinear optics. Some of the general structures presented in the latter part of this paper are implicit in the literature; our purpose is to put the three-wave interaction in the modern setting of geometric mechanics and to explore some new things, such as explicit geometric phase formulas, as well as some old things, such as integrability, in this context.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.