Abstract
A matrix method is presented for treating the dynamical phases, adiabatic phases and nonadiabatic phases of quantum superposition states. It is effective for any parameter-varying Hamiltonian system. As two examples, the evolution of mass-varying harmonic oscillator and the evolution of coherent states under parameter-varying displaced operator have been studied, Some new phenomena are obtained in the first case and the possible producing of so-called Schrodinger's cat state by geometric phases is pointed out. The quantum state useful for the quantum optical verification of Berry's phase is introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.