Abstract

We study the dynamics of the gyrophase of a charged particle in a magnetic field which is uniform in space but changes slowly with time. As the magnetic field evolves slowly with time, the changing of the gyrophase is composed of two parts. The first part is the dynamical phase, which is the time integral of the instantaneous gyrofrequency. The second part, called geometric gyrophase, is more interesting, and it is an example of the geometric phase which has found many important applications in different branches of physics. If the magnetic field returns to the initial value after a loop in the parameter space, then the geometric gyrophase equals the solid angle spanned by the loop in the parameter space. This classical geometric gyrophase is compared with the geometric phase (the Berry phase) of the spin wave function of an electron placed in the same adiabatically changing magnetic field. Even though gyromotion is not the classical counterpart of the quantum spin, the similarities between the geometric phases of the two cases nevertheless reveal the similar geometric nature of the different physics laws governing these two physics phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.