Abstract

The geometric (Berry) phase of a two-level system in a dissipative environment is analyzed by using the second-quantized formulation, which provides a unified and gauge-invariant treatment of adiabatic and nonadiabatic phases and is thus applicable to a quantitative analysis of transitional regions away from ideal adiabaticity. In view of the recent experimental observation of the Berry phase in a superconducting qubit, we illustrate our formulation for a concrete adiabatic case in the Ohmic dissipation. The correction to the total phase together with the geometry-dependent dephasing time is given in a transparent way. The behavior of the geometric phase away from ideal adiabaticity is also analyzed in some detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.