Abstract
Canonical structure of a generalized time-periodic harmonic oscillator is studied by finding the exact action variable (invariant). Hannay's angle is defined if closed curves of constant action variables return to the same curves in phase space after a time evolution. The condition for the existence of Hannay's angle turns out to be identical to that for the existence of a complete set of (quasi)periodic wave functions. Hannay's angle is calculated, and it is shown that Berry's relation of semiclassical origin on geometric phase and Hannay's angle is exact for the cases considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.