Abstract

We report a quantum dynamics study of H + H(2)(+) (v(0) = 0, j(0) = 0) scattering on its lowest triplet state, for J = 0 total angular momentum and total energies up to 1.85 eV. This provides a benchmark example of indirect resonance-mediated reaction in presence of a conical intersection (CI). Visualization of time-dependent wave packets shows significant "looping" around the CI, which is facilitated by long-lived H(3)(+) scattering resonances, predominant at low energies. State-to-state inelastic transition probabilities exhibit a highly oscillatory structure and pronounced geometric phase effects, which, in contrast to direct reactions, are more strongly marked at lower energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.