Abstract

Conical intersections (CIs) are diabolical points in the potential energy surfaces generally caused by point-wise degeneracy of different electronic states, and give rise to the geometric phases (GPs) of molecular wave functions. Here we theoretically propose and demonstrate that the transient redistribution of ultrafast electronic coherence in attosecond Raman signal (TRUECARS) spectroscopy is capable of detecting the GP effect in excited state molecules by applying two probe pulses including an attosecond and a femtosecond X-ray pulse. The mechanism is based on a set of symmetry selection rules in the presence of nontrivial GPs. The model of this work can be realized for probing the geometric phase effect in the excited state dynamics of complex molecules with appropriate symmetries, using attosecond light sources such as free-electron X-ray lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.