Abstract

We examine the geometric phase Doppler effect that appears when a structured light interacts with a rotating structured material. In our scheme the structured light possesses a vortex phase and the structured material works as an inhomogeneous anisotropic plate. We show that the Doppler effect manifests itself as a frequency shift which can be interpreted in terms of a dynamic evolution of Pancharatnam-Berry phase on the hybrid-order Poincaré sphere. The frequency shift induced by the change rate of Pancharatnam-Berry phase with time is derived from both the Jones matrix calculations and the theory of the hybrid-order Poincaré sphere. Unlike the conventional rotational Doppler effect, the frequency shift is proportional to the variation of total angular momentum of light beam, irrespective of the orbital angular momentum of input beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call