Abstract
The notion of geometric phase has been recently introduced to analyze the quantum phase transitions of many-body systems from the geometrical perspective. In this work, we study the geometric phase of the ground state for an inhomogeneous period-two anisotropic XY model in a transverse field. This model encompasses a group of familiar spin models as its special cases and shows a richer critical behavior. The exact solution is obtained by mapping on a fermionic system through the Jordan-Wigner transformation and constructing the relevant canonical transformation to realize the diagonalization of the Hamiltonian coupled in the $k$-space. The results show that there may exist more than one quantum phase transition point at some parameter regions and these transition points correspond to the divergence or extremum properties of the Berry curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.