Abstract
Magnetic skyrmions are quasi-particles with a swirling spin texture that form two-dimensional lattices. Skyrmion lattices can exhibit defects in response to geometric constraints, variations of temperature or applied magnetic fields. Measuring deformations in skyrmion lattices is important to understand the interplay between the lattice structure and external influences. Geometric phase analysis (GPA) is a Fourier-based image processing method that is used to measure deformation fields in high resolution transmission electron microscopy (TEM) images of crystalline materials. Here, we show that GPA can be applied quantitatively to Lorentz TEM images of two-dimensional skyrmion lattices obtained from a chiral magnet of FeGe. First, GPA is used to map deformation fields around a 5–7 dislocation and the results are compared with the linear theory of elasticity. Second, rotation angles between skyrmion crystal grains are measured and compared with angles calculated from the density of dislocations. Third, an orientational order parameter and the corresponding correlation function are calculated to describe the evolution of the disorder as a function of applied magnetic field. The influence of sources of artifacts such as geometric distortions and large defoci are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.