Abstract

Two main perspectives have been developed within the Multidisciplinary Design Optimization (MDO) literature for classifying and comparing MDO architectures: a numerical point of view and a formulation/data flow point of view. Although significant work has been done here, these perspectives have not provided much in the way of a priori information or predictive power about architecture performance. In this report, we outline a new perspective, called the geometric perspective, which we believe will be able to provide such predictive power. Using tools from differential geometry, we take several prominent architectures and describe mathematically how each constructs the space through which it moves. We then consider how the architecture moves through the space which it has constructed. Taken together, these investigations show how each architecture relates to the original feasible design manifold, how the architectures relate to each other, and how each architecture deals with the design coupling inherent to the original system. This in turn lays the groundwork for further theoretical comparisons between and analyses of MDO architectures and their behaviour using tools and techniques derived from differential geometry. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call