Abstract
We study the problem of discrete geometric packing. Here, given weighted regions (say in the plane) and points (with capacities), one has to pick a maximum weight subset of the regions such that no point is covered more than its capacity. We provide a general framework and an algorithm for approximating the optimal solution for packing in hypergraphs arising out of such geometric settings. Using this framework we get a flotilla of results on this problem (and also on its dual, where one wants to pick a maximum weight subset of the points when the regions have capacities). For example, for the case of fat triangles of similar size, we show an (1)-approximation and prove that no PTAS is possible. See [ehr-gpnuc-11] for the full version of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.