Abstract

Three-dimensional multilayer wide curves are spatial curves with variable cross sections and multiple materials. This paper introduces a geometric optimization method for spatial multimaterial compliant mechanisms and structures by using three-dimensional multilayer wide curves. In this paper, every multimaterial connection is represented by a three-dimensional multilayer wide curve and the whole spatial multimaterial compliant mechanism or structure is modeled as a set of connected three-dimensional multilayer wide curves. The geometric optimization of a spatial multimaterial compliant mechanism or structure is considered as the optimal selection of control parameters of the corresponding three-dimensional multilayer wide curves. The deformation and performance of spatial multimaterial compliant mechanisms and structures are evaluated by the isoparametric degenerate-continuum nonlinear finite element procedure. The problem-dependent objectives are optimized and the practical constraints are imposed during the optimization process. The optimization problem is solved by the MATLAB constrained nonlinear programming algorithm. The effectiveness of the proposed geometric optimization procedure is verified by the demonstrated examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call