Abstract

This paper presents an optimization methodology for designing radiant enclosures containing specularly-reflecting surfaces. The optimization process works by making intelligent perturbations to the enclosure geometry at each design iteration using specialized numerical algorithms. This requires far less time than the forward “trial-and-error” design methodology, and the final solution is near optimal. In this application, the radiant enclosure is analyzed using a Monte Carlo technique based on exchange factors, and the design is optimized using the Kiefer-Wolfowitz method. This design methodology is demonstrated by solving two industrially-relevant design problems involving two-dimensional enclosures that contain specular surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.