Abstract
We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of non-negative, constant description-complexity algebraic functions. We first give a FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions, and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum area hulls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.