Abstract

This paper presents an analytical model and a geometric numerical integrator for a tethered spacecraft model that is composed of two rigid bodies connected by an elastic tether. This model includes important dynamic characteristics of tethered spacecraft in orbit, namely the nonlinear coupling between tether deformations, rotational dynamics of rigid bodies, a reeling mechanism, and orbital dynamics. A geometric numerical integrator, referred to as a Lie group variational integrator, is developed to numerically preserve the Hamiltonian structure of the presented model and its Lie group configuration manifold. The structure-preserving properties are particularly useful for studying complex dynamics of a tethered spacecraft. These properties are illustrated by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.