Abstract
In the current work, a novel hybrid laminate with negative Poisson’s ratio (NPR) is developed by considering auxetic laminate which is composed of carbon nanotube-reinforced composite (CNTRC) and fiber-reinforced composite (FRC) materials. The maximum magnitude of out-of-plane NPR is identified in the case of (20 F/20 C/−20 C/20 C) S laminate as well. Meanwhile, a method for the geometric non-linear analysis of hybrid laminated beam with NPR including the non-linear bending, free, and forced vibrations is proposed. The beam deformation is modeled by combining higher-order shear-deformation theory (HSDT) and large deflection theory. Based on a two-step perturbation approach, the asymptotic solutions of the governing equations are obtained to capture the linear and non-linear frequencies and load-deflection curves. Moreover, a two-step perturbation methodology in conjunction with fourth-order Runge–Kutta method is employed to solve the forced-vibration problem. Several key factors, such as CNT distribution, variations in the elastic foundation, and thermal stress, are considered in the exhaustive analysis. Theoretical results for some particular cases are given to examine the geometric non-linearity behavior of hybrid beam with NPR as well as positive Poisson’s ratio (PPR).
Highlights
Materials and structures with negative Poisson’s ratio (NPR) behave in a counter-intuitive manner: when compressed in the axial direction, they contract transversely
The results showed enhancement in load sustained and energy absorption by auxetic laminates
Sun et al [36] and Chen et al [62] presented a model for effective Poisson’s ratio (EPR) for general thick laminates
Summary
Materials and structures with negative Poisson’s ratio (NPR) behave in a counter-intuitive manner: when compressed (stretched) in the axial direction, they contract (expand) transversely. Thereafter, analysis on cellular auxetics [5,6], multi-material auxetics [7,8], and auxetic composites [9,10] was carried out
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.