Abstract
The Nelder-Mead Algorithm (NMA) is an almost half-century old method for numerical optimization, and it is a close relative of Particle Swarm Optimization (PSO) and Differential Evolution (DE). In recent work, PSO, DE and NMA have been generalized using a formal geometric framework that treats solution representations in a uniform way. These formal algorithms can be used as templates to derive rigorously specific PSO, DE and NMA for both continuous and combinatorial spaces retaining the same geometric interpretation of the search dynamics of the original algorithms across representations. In previous work, a geometric NMA was derived for the binary string representation. In this paper, we advance this line of research and derive formally a specific NMA for the permutation representation. The result is a Nelder-Mead Algorithm searching the space of permutations by acting directly on this representation. We present initial experimental results for the new algorithm on the Traveling Salesman Problem. The peculiar geometry of the permutation space seems to affect the performance of the geometric NMA that does not perform as well as the NMA for the binary string representation. We present a discussion about the nature of permutation spaces that seeks to explain this phenomenon. Further study is required to understand if this is a fundamental limitation of the application of the geometric NMA to permutation spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.