Abstract

Comprehensive control of light-matter interactions at the nanoscale is increasingly important for the development of miniaturized light-based technologies that have applications ranging from information processing to sensing. Control of light in nanoscale structures-the realm of nanophotonics-requires precise control of geometry on a few-nanometer length scale. From a chemist's perspective, bottom-up growth of nanoscale materials from chemical precursors offers a unique opportunity to design structures atom-by-atom that exhibit desired properties. In this Account, we describe our efforts to create chemically and morphologically precise Si nanowires (NWs) with designed nanophotonic properties using a vapor-liquid-solid (VLS) growth process. A synthetic technique termed "Encoded Nanowire Growth and Appearance through VLS and Etching" (ENGRAVE) combines optimized VLS growth, dopant modulation, and dopant-dependent wet-chemical etching to produce NWs with precisely designed diameter modulations, yielding lithographic-like morphological control that can vary from sinusoids to fractals. The ENGRAVE NWs thus provide a versatile playground for coupling, trapping, and directing light in a nanoscale geometry. Previously, the nanophotonic functionality of NWs primarily relied on uniform-diameter structures that exhibit Mie scattering resonances and longitudinally oriented guided modes, two key photonic properties that typically cannot be utilized simultaneously due to their orthogonality. However, when the NW diameter is controllably modulated along the longitudinal axis on a scale comparable to the wavelength of light-a geometry we term a geometric superlattice (GSL)-we found that NWs can exhibit a much richer and tunable set of nanophotonic properties, as described herein. To understand these unique properties, we first summarize the basic optical properties of uniform-diameter NWs using Mie scattering theory and dispersion relations, and we describe both conventional and relatively new microscopy methods that experimentally probe the optical properties of single NWs. Next, delving into the properties of NW GSLs, we summarize their ability to couple a Mie resonance with a guided mode at a select wavevector (or wavelength) dictated by their geometric pitch. The coupling forms a bound guided state (BGS) with a standing wave profile, which allows a NW GSL to serve as a spectrally selective light coupler and to act as optical switch or sensor. We also summarize the capacity of a GSL to trap light by serving as an ultrahigh (theoretically infinite) quality factor optical cavity with an optical bound state in the continuum (BIC), in which destructive interference prevents coupling to and from the far field. Finally, we discuss a future research outlook for using ENGRAVE NWs for nanoscale light control. For instance, we highlight research avenues that could yield light-emitting devices by interfacing a NW-based BIC with emissive materials such as quantum dots, 2D materials, and hybrid perovskite. We also discuss the design of photonic band gaps, generation of high-harmonics with quasi-BIC structures, and the possibility for undiscovered nanophotonic properties and phenomena through more complex ENGRAVE geometric designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call