Abstract

We construct explicit geometric models for moduli spaces of semi-stable strongly parabolic Higgs bundles over the Riemann sphere, in the case of rank two, four marked points, arbitrary degree, and arbitrary weights. The mechanism of construction relies on elementary geometric and combinatorial techniques, based on a detailed study of orbit stability of (in general non-reductive) bundle automorphism groups on certain carefully crafted spaces. The aforementioned techniques are not exclusive to the case we examine, and this work elucidates a general approach to construct arbitrary moduli spaces of semi-stable parabolic Higgs bundles in genus 0, which is encoded into the combinatorics of weight polytopes. We also present a comprehensive analysis of the geometric models' behavior under variation of parabolic weights and wall-crossing, which is concentrated on their nilpotent cones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.