Abstract

This work explores some of the terrain between functional equations, geometric function theory, and operator theory. It is inspired by the fact that whenever a composition operator or one of its powers is compact on the Hardy space H 2, then its eigenfunctions cannot grow too quickly on the unit disc. The goal is to show that under certain natural (and necessary) additional conditions there is a converse: slow growth of eigenfunctions implies compactness. We interpret the slow-growth condition in terms of the geometry of the principal eigenfunction of the composition operator (the "Königs function" of the inducing map). We emphasize throughout the importance of this eigenfunction in providing a simple geometric model for the operator′s inducing map.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.