Abstract

The paper considers the geometric locus of points equidistant to two spheres of different diameters. If these spheres are concentric, the sought multitude constitutes a single surface – a sphere of diameter equal to arithmetic mean of the diameters of the given spheres. In other cases the geometric locus of points equidistant to two spheres of different diameters constitutes two surfaces. In case the spheres intersect, are tangent or distant to each other, the first of these surfaces is a two-sheet hyperboloid of revolution that degenerates into a plane in case the spheres are equal. In case the spheres intersect, the second of the surfaces is an ellipsoid of revolution that degenerates into a straight line if the spheres are tangent to each other. In the case of distant spheres, the second of the surfaces is a two-sheet hyperboloid of revolution. In case the spheres contain one another, the sough geometric locus constitutes two co-axial co-focused ellipsoids of revolution. The equations defining the mentioned surfaces are presented. The regularities in shape and location of these surfaces were studied; the formulas for the major and the minor axes of the ellipsoids and the vertices of the two-sheet hyperboloids of revolution were derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.