Abstract

SummaryIn this paper, we present the modeling and local equilibrium controllability analysis of a spherical robot. The robot consists of a spherical shell that is internally actuated by a pendulum mechanism. The rolling motion of the sphere manifests itself as a nonholonomic constraint in the modeling. We derive the dynamic model of the system using Lagrangian reduction and the variational principle. We first compute the Lagrangian and identify the symmetry with respect to a group action. The system Lagrangian and the rolling constraint are invariant with respect to the group isotropy and hence permit a reduced dynamic formulation termed as the nonholonomic ‘Euler‐Poincaré’ equation with advected dynamics. Using Lie brackets and symmetric products of the potential and control vector fields, local configuration accessibility and local (fiber) equilibrium controllability are presented. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.