Abstract

The aim of these pages is to give a brief, self-contained introduction to that part of Geometric Measure Theory which is more directly related to the Calculus of Variations, namely the theory of currents and its applications to the solution of Plateau problem. (The theory of finite perimeter sets, which is closely related to currents and to the Plateau problem, is treated in the article “Free interfaces and free discontinuities: variational problems”). Named after the belgian physicist J.A.F. Plateau (1801-1883), this problem was originally formulated as follows: find the surface of minimal area spanning a given curve in the space. Nowadays, it is mostly intended in the sense of developing a mathematical framework where the existence of k-dimensional surfaces of minimal volume that span a prescribed boundary can be rigorously proved. Indeed, several solutions have been proposed in the last century, none of which is completely satisfactory. One difficulty is that the infimum of the area among all smooth surfaces with a certain boundary may not be attained. More precisely, it may happen that all minimizing sequences (that is, sequences of smooth surfaces whose area approaches the infimum) converge to a singular surface. Therefore one is forced to consider a larger class of admissible surfaces than just smooth ones (in fact, one might want to do this also for modelling reasons—this is indeed the case with soap films, soap bubbles, and other capillarity problems). But what does it mean that a set “spans” a given curve? and what should we intend by area of a set which is not a smooth surface? The theory of integral currents developed by H. Federer and W.H. Fleming [4] provides a class of generalized (oriented) surfaces with well-defined notions of boundary and area (called mass) where the existence of minimizers can

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call