Abstract

High porosity open-cell metal foams have captured the interest of thermal industry due to their high surface area density, low weight, and ability to create tortuous mixing of fluid. In this work, application of metal foams as heat sinks has been explored. The foam has been represented as a simple cubic structure and heat transfer from a heated base has been treated analogous to that of solid fins. Based on this model, three performance parameters namely, foam efficiency, overall foam efficiency, and foam effectiveness have been evaluated for metal foam heat sinks. Parametric studies with varying foam length, porosity, pore density, material, and fluid velocity have been conducted. It has been observed that geometric mean of foam efficiency and foam effectiveness can be a useful parameter to exactly determine the optimum foam length. Additionally, the variation in temperature profile of different foams heated from one end has been determined experimentally by cooling these with atmospheric air. The experimental results have been presented for open-cell metal foams (10 and 30 PPI) made of copper/aluminium/Fe–Ni–Cr alloy with porosity in the range of 0.908–0.964.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call