Abstract
Functions which are covariant or invariant under the transformations of a reductive linear algebraic group can be advantageously expressed in terms of functions defined in the orbit space of the group, i.e. as functions of a finite set of basic invariant polynomials. This fact and the tools of geometric invariant theory can be exploited in many physical contexts where the study of covariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry and/or supersymmetry breaking in possibly supersymmetric quantum field theories of elementary particles, in the analysis of phase spaces and structural phase transitions in solid state physics (Landau's theory), in covariant bifurcation theory, in crystal field theory and in most areas of solid state theory where use is made of symmetry adapted functions. We shall present some elements of geometric invariant theory and illustrate some of the possible applications in the study of spontaneous symmetry and supersymmetry breaking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.