Abstract

For the free group $F_{N}$ of finite rank $N \geq 2$ we construct a canonical Bonahon-type continuous and $Out(F_N)$-invariant \emph{geometric intersection form} \[ <, >: \bar{cv}(F_N)\times Curr(F_N)\to \mathbb R_{\ge 0}. \] Here $\bar{cv}(F_N)$ is the closure of unprojectivized Culler-Vogtmann's Outer space $cv(F_N)$ in the equivariant Gromov-Hausdorff convergence topology (or, equivalently, in the length function topology). It is known that $\bar{cv}(F_N)$ consists of all \emph{very small} minimal isometric actions of $F_N$ on $\mathbb R$-trees. The projectivization of $\bar{cv}(F_N)$ provides a free group analogue of Thurston's compactification of the Teichm\"uller space. As an application, using the \emph{intersection graph} determined by the intersection form, we show that several natural analogues of the curve complex in the free group context have infinite diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.